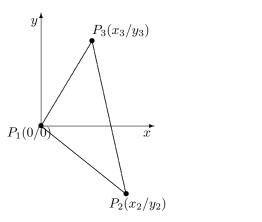
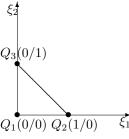
DMa 3 Serie 1

Aufgabe 1

Bilden Sie das Dreieck $P_1P_2P_3$ auf das Dreieck $Q_1Q_2Q_3$ ab.





Aufgabe 2

Gegeben seien die folgenden Abbildungen des \mathbb{R}^3 in sich:

 $\begin{array}{ll} \mathcal{F}_1 \ : & \text{Spiegelung an der Ebene} \ x_1 = x_2 \\ \mathcal{F}_2 \ : & \text{Spiegelung an der Ebene} \ x_1 = 0 \\ \mathcal{F}_3 \ : & \text{Drehung um die} \ x_3 - \text{Achse um den Winkel} \ \varphi = \frac{\pi}{6} \end{array}$

- a) Bestimmen Sie die Abbildungsmatrizen A_k bzgl. der Standardbasis Σ_e der Abbildungen \mathcal{F}_k , k=1,2,3.
- b) Verifizieren Sie mit Hilfe der Matrizen A_1 , A_2 und A_3 die Gleichung

$$\mathcal{F}_3 \circ \mathcal{F}_3 \circ \mathcal{F}_3 = \mathcal{F}_2 \circ \mathcal{F}_1$$

geometrische Interpretaion

Aufgabe 3

Wir betrachten die *lineare* Abbildung $\mathcal{F}:\mathbb{R}^3\longmapsto\mathbb{R}^3$, welche die drei Basisvektoren e_1 , e_2 und e_3 des \mathbb{R}^3 wie folgt abbildet:

$$\mathcal{F}(e_1) = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$$
 $\mathcal{F}(e_2) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $\mathcal{F}(e_3) = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$

- a) Bestimmen Sie das Bild P' des Punktes P(6/2/3) unter \mathcal{F} .
- b) Bestimmen Sie alle Punkte des \mathbb{R}^3 , die auf Q'(2/1) abgebildet werden.
- c) Geben Sie den *Kern*, d.h. $\mathcal{F}(x) = 0$ von \mathcal{F} an.

Aufgabe 4

Betrachten Sie folgende *lineare* Abbildungen im \mathbb{R}^3 bzgl. der Standardbasis Σ_e

- a) Spiegelung S an der xz-Ebene.
- b) Drehung D_x um die x-Achse, Drehwinkel φ_x Drehung D_y um die y-Achse, Drehwinkel φ_y Drehung D_z um die z-Achse, Drehwinkel φ_z
- c) Zusammensetzung: zuerst Spiegelung S, dann D_z , dann D_x und schliesslich D_y , speziell für $\varphi_x = \frac{\pi}{4}$ und $\varphi_y = \varphi_z = \frac{\pi}{2}$

Lösung 1

Diese Abbildung (Grundaufgabe der Methode der finiten Elemente) hat die Abbildungsmatrix

$$A = \frac{1}{d} \begin{pmatrix} y_3 & -x_3 \\ -y_2 & x_2 \end{pmatrix} \qquad d := x_2 y_3 - x_3 y_2$$

Lösung 2

a)

$$A_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad A_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad A_3 = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

mit Hilfe der Bilder von e_k , k=1,2,3

b)

$$A_3^3 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = A_2 \cdot A_1$$
 Reihenfolge! = Drehung um die x_3 -Achse, Drehwinkel $\varphi = \frac{\pi}{2}$

Lösung 3

$$F = \begin{pmatrix} 3 & 2 & -1 \\ -1 & 1 & 3 \end{pmatrix} \text{ bzgl. } \Sigma_e$$
 a) $F(P) = P', P'(19/5)$ b) $g: r = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 7 \\ -8 \\ 5 \end{pmatrix} \ \mu \in \mathbb{R}$ c) $Fx = 0: Kern(F) = span \left\{ (7, -8, 5)^T \right\}$

Lösung 4

$$\mathbf{a})\,S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\,S^2 = I_3$$

$$\mathbf{b})D_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi_x & -\sin\varphi_x \\ 0 & \sin\varphi_x & \cos\varphi_x \end{pmatrix} \quad D_y = \begin{pmatrix} \cos\varphi_y & 0 & \sin\varphi_y \\ 0 & 1 & 0 \\ -\sin\varphi_y & 0 & \cos\varphi_y \end{pmatrix} \quad D_z = \begin{pmatrix} \cos\varphi_z & -\sin\varphi_z & 0 \\ \sin\varphi_z & \cos\varphi_z & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{c})\,A = \begin{pmatrix} \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ 0 & -1 & 0 \end{pmatrix} = D_y \cdot D_x \cdot D_z \cdot S$$

Aufgabe 5

Sei E eine Ebene im \mathbb{R}^3 durch den Nullpunkt orthogonal zum Vektor $n=(1,\ -1,\ 2)^T$

- a) Geben Sie die Abbildung \mathcal{P} an, die jeden Vektor $x \in \mathbb{R}^3$ orthogonal auf die Ebene E projiziert.
- b) Stellen Sie die Abbildung $\mathcal P$ durch eine Abbildungsmatrix P bezüglich der Standardbasis Σ_e : $(=e_1,e_2,e_3)$ dar.
- c) Was für Eigenschaften hat P?
- d) Wählen Sie ein neues Koordinatensystem Σ' so, dass die neue Abbildungsmatrix P' möglichst einfach wird.

Aufgabe 6

a) Welche der folgenden Vektor-Tripel bilden eine Basis im \mathbb{R}^3 :

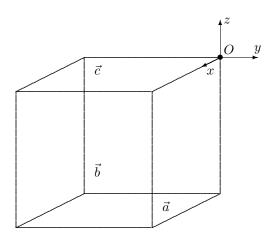
$$f_1 = \begin{pmatrix} 1, & 0, & 1 \end{pmatrix}^T \qquad f_2 = \begin{pmatrix} 0, & 1, & 1 \end{pmatrix}^T \qquad f_3 = \begin{pmatrix} 1, & 1, & 0 \end{pmatrix}^T$$

$$g_1 = \begin{pmatrix} 1, & 2, & 1 \end{pmatrix}^T \qquad g_2 = \begin{pmatrix} 2, & 1, & 1 \end{pmatrix}^T \qquad g_3 = \begin{pmatrix} 4, & 5, & 3 \end{pmatrix}^T$$

$$h_1 = \begin{pmatrix} 3, & 2, & -4 \end{pmatrix}^T \qquad h_2 = \begin{pmatrix} 2, & 4, & 6 \end{pmatrix}^T \qquad h_3 = \begin{pmatrix} 17, & 6, & 4 \end{pmatrix}^T$$

b) Der Vektor $v \in \mathbb{R}^3$ hat bzgl. der Standardbasis Σ_e die Koordinaten $(1, 2, 3)^T$. Bestimmen Sie in den Fällen, in denen obige Vektoren eine Basis bilden, die Koordinaten von v.

Aufgabe 7



Gegeben: \vec{a} , \vec{b} sowie \vec{c} im Einheitswürfel, Kantenlänge =1, cf. Figur und ein Vektor $\vec{d}=(1,\ 1,\ 1)^T$

- a) \vec{d} als Linearkombination von \vec{a} , \vec{b} und \vec{c} .
- b) Bestimmen Sie eine o.n. Basis Σ' mit b_1 =Vielfaches von \vec{a} , b_1 und b_2 liegen in der von \vec{a} und \vec{b} aufgespannten Ebene.
- c) \vec{d} in der neuen Basis Σ'

Aufgabe 8

Gegeben sind die beiden Vektoren $a=(2,\ 1)^T$ und $b=(-3,\ 6)^T$. Diese beiden Vektoren sind orthogonal. Gesucht ist $v=(-20,\ 16)^T$ als Linearkombination von a und b.

Aufgabe 9

Gegeben seien die Vektoren

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 2 \\ -3 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ -4 \\ 6 \\ 0 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad v_5 = \begin{pmatrix} 2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad v_6 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Bestimmen Sie alle Teilmengen \mathbb{T} der Menge $\mathbb{S} = \{v_1, v_2, v_3, v_4, v_5, v_6\} \subset \mathbb{R}^4$, die eine Basis des \mathbb{R}^4 bilden.

Aufgabe 10

Im \mathbb{R}^4 wird durch die Vektoren $\{a_1, a_2, a_3\}$ ein Unterraum U und durch die Vektoren $\{b_1, b_2, b_3\}$ ein Unterraum V aufgespannt, also $U = span\{a_1, a_2, a_3\}$ und $V = span\{b_1, b_2, b_3\}$.

$$a_{1} = \begin{pmatrix} 2 \\ -1 \\ 3 \\ 5 \end{pmatrix}, \quad a_{2} = \begin{pmatrix} 5 \\ -2 \\ 5 \\ 8 \end{pmatrix}, \quad a_{3} = \begin{pmatrix} -5 \\ 3 \\ -8 \\ -13 \end{pmatrix}, \quad b_{1} = \begin{pmatrix} 4 \\ 1 \\ -2 \\ -4 \end{pmatrix}, \quad b_{2} = \begin{pmatrix} 7 \\ 2 \\ -6 \\ -9 \end{pmatrix}, \quad b_{3} = \begin{pmatrix} 3 \\ 0 \\ 0 \\ -1 \end{pmatrix}$$

Bestimmen Sie je eine Basis der Unterrüme U+V sowie $U\cap V$.

Aufgabe 11

a) Zeigen Sie, dass durch folgende Abbildung ein Skalarprodukt auf dem Vektorraum $V=\mathbb{R}^{n\times n}$ der $n\times n-$ Matrizen definiert ist:

$$(A, B) := Spur(AB^T), \quad A, B \in \mathbb{R}^{n \times n}$$

b) Sei D eine $n \times n-$ Diagonalmatrix mit positiven Diagonalelementen. Behauptet wird, dass folgende Vorschrift

$$(x,y) := x^T D y, \quad x,y \in \mathbb{R}^n$$

ein Skalarprodukt definiert. Beweisen Sie diese Behauptung.

Aufgabe 12

Auf dem Vektorraum \mathcal{P}_2 der Polynome vom Grad ≤ 2 ist das Skalarprodukt

$$(p,q) := \int_0^1 p(x)q(x) dx$$

definiert.

- a) Orthonormieren Sie die Standardbasis $\{1,x,x^2\}$ von \mathcal{P}_2 bezüglich diesem Skalarprodukt. Gram-Schmidt
- b) Projizieren Sie die Funktion $f(x) = e^x$ orthogonal auf \mathcal{P}_2 .