DMa3 Serie 4

Aufgabe 1

Wir betrachten den Vektorraum $V = C([0, 2\pi])$.

- a) Zeigen Sie, dass $\{1, \cos{(2x)}\}$ und $\{\sin^2{(x)}, \cos^2{(x)}\}$ denselben Unterraum von V erzeugen.
- b) Wir versehen V mit dem folgenden Skalarprodukt:

$$(f,g) := \int_0^{2\pi} f(x)g(x) dx$$

Zeigen Sie, dass 1, $\sin(x)$ und $\cos(x)$ orthogonal sind.

Aufgabe 2

Die folgenden Vektoren erzeugen einen Unterraum U von \mathbb{R}^4 :

$$v_1 = \begin{pmatrix} 3 \\ 1 \\ -5 \\ 4 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 6 \\ 2 \\ -10 \\ 8 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 3 \\ -1 \\ -5 \\ 2 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 3 \\ 2 \\ -5 \\ 5 \end{pmatrix} \quad v_5 = \begin{pmatrix} -3 \\ -3 \\ 5 \\ -6 \end{pmatrix}$$

- a) Bestimmen Sie die Dimension von U.
- b) Bestimmen Sie eine orthonormierte Basis von U.
- c) Ergänzen Sie die Basis von b) zu einer orthonormierten Basis von \mathbb{R}^4 .

Aufgabe 3

Sei \mathcal{P}_2 der Vektorraum der Polynome vom Grad ≤ 2 . Welche der folgenden drei Systeme von Polynomen sind erzeugend, welche linear unabhängig?

a)
$$P_1(x) = (x+1)^2$$
, $P_2(x) = x^2 + 1$, $P_3(x) = (x-1)^2$.

b)
$$P_1(x) = (x+1)^2$$
, $P_2(x) = (x-1)^2$, $P_3(x) = (x+2)^2$.

c)
$$P_1(x) = x^2 - 1$$
, $P_2(x) = x^2 + x$, $P_3(x) = x + 1$, $P_4(x) = x - 1$.

Aufgabe 4

Im Vektorraum \mathcal{P} der Polynome definiert

$$(P,Q) := \int_0^1 P(x)Q(x) dx, \qquad P,Q \in \mathcal{P}$$

ein Skalarprodukt.

- a) Bestimmen Sie ein Polynom zweiten Grades, das orthogonal auf $P_0(x) = 1$ und $P_1(x) = x$ steht.
- b) Bestimmen Sie den Winkel φ zwischen $P_m(x)=x^m$ und $P_n(x)=x^n$ für beliebige $m,n\in\mathbb{N}$. Tipp: Berechnen Sie zuerst $\cos^2{(\varphi)}$ und damit $\sin^2{(\varphi)}$. Daraus ergibt sich ein einfacher Ausdruck für $\sin{(\varphi)}$

Lösung 1

a) $e_1=1$ und $e_2=\cos{(2x)}$ sowie $b_1=\sin^2{(x)}$ und $b_2=\cos^2{(x)}$ $e_1=b_1+b_2$ und $e_2=b_2-b_1$, d.h. e_1 und e_2 lassen sich eindeutig als LK von b_1 und b_2 darstellen. (und umgekehrt)

b)
$$(1, \sin(x)) = \int_{0}^{2\pi} \sin(x) dx = 0$$
, $(1, \cos(x)) = \dots$ analog $(\sin(x), \cos(x)) = \int_{0}^{2\pi} \sin(x) \cos(x) dx = \frac{1}{2} \int_{0}^{2\pi} \sin 2x dx = 0$

Lösung 2

Gauss-Algorithmus $A = (v_1 \ v_2 \ v_3 \ v_4 \ v_5) = 4 \times 5$ -Matrix

a) Endschema:

die Pivotspalten bilden eine Basis, also auch die entsprechenden Spaltenvektoren Rang(A)=2, d.h. dim(U)=2 und $U=span\left\{ v_1,v_3\right\}$

b) LK von v_1 und v_3 so, dass die Rechnung einigermassen durchführbar (möglichst viele Nullen): z.B. $b_1=v_1-v_3$ und $b_2=v_1+v_3$ orthonormierte Basis mit Gram-Schmidt:

$$e_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \quad e_2 = \frac{1}{\sqrt{154}} \begin{pmatrix} 6\\-3\\-10\\3 \end{pmatrix}$$

c) mit

$$b_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad b_4 = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \quad e_3 = \frac{1}{\sqrt{231}} \begin{pmatrix} 10 \\ -5 \\ 9 \\ 5 \end{pmatrix}, \quad e_4 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}$$

Lösung 3

a) linear abhängig und nicht erzeugend

b) linear unabhängig und erzeugend

b) linear abhängig und erzeugend

Lösung 4

a)
$$P_2(x) = \alpha (6x^2 - 6x + 1), \ \alpha \in \mathbb{R}$$

b)

$$\cos^2(\varphi) = \frac{\left(\int\limits_0^1 x^{m+n} \, dx\right)^2}{\int\limits_0^1 x^{2m} \, dx \, \int\limits_0^1 x^{2n} \, dx} = \frac{(2m+1)(2n+1)}{(m+n+1)^2} = 1 - \frac{(m-n)^2}{(m+n+1)^2}$$

also $\sin(\varphi) = \pm \frac{m-n}{m+n+1}$