MLAN1 Geometrie Serie 1

Aufgabe 1

Drücken Sie in einem Parallelogramm \overrightarrow{ABCD} mit $\overrightarrow{AB} = \vec{a}$ und $\overrightarrow{AD} = \vec{b}$ die Vektoren \overrightarrow{AC} , \overrightarrow{CB} und \overrightarrow{BD} durch \vec{a} und \vec{b} aus.

Aufgabe 2

Zeigen Sie: sind \vec{u} , \vec{v} und \vec{w} die Vektoren von den Ecken eines Dreiecks zum Schwerpunkt S des Dreiecks, so gilt:

$$\vec{u} + \vec{v} + \vec{w} = \vec{0}$$

Aufgabe 3

In einem Dreieck ABC liegt D auf AC und E auf AB so, dass $\overline{AE} = \frac{1}{3} \overline{AB}$ und $\overline{CD} = \frac{2}{5} \overline{AC}$. BD und CE schneiden sich in F. Welche Bruchteile machen die Strecken \overline{BF} und \overline{CF} von \overline{BD} bzw. \overline{CE} aus?

Aufgabe 4

Zeigen Sie: in einem Parallelogramm halbieren sich die Diagonalen (mit Hilfe von Vektoren).

Aufgabe 5

Von einem gleichschenkligen Dreieck ist der Schenkel a und der Basiswinkel α gegeben. Berechnen Sie daraus den Umkreisradius R.

Aufgabe 6

a) Im Würfel ABCDEFGH liegt J in der Seitenfläche BCGF so, dass gilt:

$$\overrightarrow{BJ} = \frac{2}{3} \; \overrightarrow{BC} + \frac{3}{4} \; \overrightarrow{BF}$$

 $\mbox{Zerlegen Sie } \overrightarrow{AJ} \mbox{ nach } \overrightarrow{a} = \overrightarrow{AB}, \ \overrightarrow{b} = \overrightarrow{AD} \mbox{ und } \overrightarrow{c} = \overrightarrow{AF}.$

b) Im Würfel ABCDEFGH liegt J auf der Körperdiagonalen BH, so dass

$$\overline{HJ} = \frac{1}{4} \, \overline{BH}$$

Die Gerade g=g(G,J) schneide die Ebene ADHE in K. Zerlegen Sie \overrightarrow{AK} nach \overrightarrow{AD} und \overrightarrow{AE} . Tipp: Mit einer Skizze des gegebenen Würfels.

MLAN1 Geometrie Lösungen Serie 1

Lösung 1

$$\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$$
, $\overrightarrow{CB} = -\overrightarrow{b}$ und $\overrightarrow{BD} = \overrightarrow{b} - \overrightarrow{a}$.

Lösung 2

Konstruktion

Lösung 3

$$\overrightarrow{BF} = x \, \left(-\vec{a} + \frac{3}{5} \, \vec{b} \right) \qquad \overrightarrow{CF} = y \, \left(\frac{1}{3} \, \vec{a} - \vec{b} \right) \qquad \vec{a} = \overrightarrow{AB} \quad \vec{b} = \overrightarrow{AC}$$

$$\frac{\overline{BF}}{\overline{BD}} = \frac{5}{6} \qquad \text{d.h.} \qquad x = \frac{5}{6}$$

$$\frac{\overline{CF}}{\overline{CE}} = \frac{1}{2} \qquad \text{d.h.} \qquad y = \frac{1}{2}$$

Lösung 4

Mit einer Skizze des gegebenen Parallelogramms:

$$\overrightarrow{AE} = x (\vec{a} + \vec{b})$$
 $\overrightarrow{EB} = y (\vec{a} - \vec{b})$

wobei $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{AD}$ und E der Schnittpunkt der Diagonalen.

$$x \cdot (\vec{a} + \vec{b}) + y \cdot (\vec{a} - \vec{b}) = \vec{a}$$

woraus folgt: $x = y = \frac{1}{2}$

Lösung 5

$$R = \frac{a}{2\,\sin\alpha}$$

Lösung 6

a)

$$\overrightarrow{AJ} = \frac{1}{4} \vec{a} + \frac{2}{3} \vec{b} + \frac{3}{4} \vec{c}.$$

b)

$$\overrightarrow{AK} = \frac{2}{3} \overrightarrow{AD} + \frac{2}{3} \overrightarrow{AE}$$