MLAN1 Matrizen Serie 6

Aufgabe 1

Lösen Sie das folgende lineare Gleichungssystem Bx=c mit dem **Gauss – Algorithmus**, wobei die Systemmatrix B und die rechte Seite c wie folgt gegeben sind:

$$B = \begin{pmatrix} 2 & -3 \\ -4 & 6 \\ -2 & 3 \end{pmatrix} \text{ und } c = \begin{pmatrix} 4 \\ -8 \\ -4 \end{pmatrix}.$$

Interpretieren Sie diese Situation geometrisch.

Aufgabe 2

Bestimmen Sie mit dem **Gauss – Algorithmus** die Lösung des folgenden linearen Gleichungssystems (*exakte* Angaben):

$$\begin{cases} 2x_1 & - & x_3 + 9x_4 = 7 \\ 4x_1 - & x_2 + & x_3 + 18x_4 = 11 \\ -2x_1 - & 3x_2 + 11x_3 - 5x_4 = -8 \\ & - & 4x_2 + 10x_3 - 10x_4 = -27 \end{cases}$$

Aufgabe 3

Gegeben: ein lineares Gleichungssystem $Ax=b,\ m=n$ und zudem sei $a_{jj}^{(j)}\neq 0$ für $j=1,2,\cdots,n$.

- a) Bestimmen Sie den **Rechenaufwand** für den 1- ten, 2- ten, 3- ten, \dots , j-ten Eliminationsschritt (der Rechenaufwand ist im wesentlichen die Anzahl der **wesentlichen Operationen**; wesentliche Operationen sind dabei Multiplikation und Division)
- b) Bestimmen Sie den Rechenaufwand für alle Eliminationsschritte.

Aufgabe 4

Gauss - Algorithmus für

$$\begin{cases} 3x_1 + 5x_2 + x_3 + 2x_4 = 1\\ 2x_1 - 4x_2 + 3x_3 + 7x_4 = 2\\ 4x_1 + 14x_2 - x_3 - 3x_4 = 0\\ 13x_1 + 7x_2 + 9x_3 + 20x_4 = 7 \end{cases}$$

Aufgabe 5

Diskutieren Sie die Lösungsmenge der folgenden Gleichungssysteme: *mit* Angabe der entsprechenden Lösungen.

a)
$$\begin{cases} 2x_1 + ax_2 = 8 \\ ax_1 + 8x_2 = a^2 \end{cases}$$
 b)
$$\begin{cases} bx_1 + 3x_2 = 1 \\ x_1 + x_2 = b \end{cases}$$
 c)
$$\begin{cases} x_2 = 2x_1 + 3 \\ x_2 = mx_1 + q \end{cases}$$

Aufgabe 6

Gegeben ist die folgende Zahlenfolge:

$$a_1 = 1$$
 $a_2 = 11$ $a_3 = 31$ $a_4 = 1341$ $a_5 = 142361$ $a_6 = 1624331281$...

Gesucht ist ein Bildungsgesetz für diese Zahlenfolge. Wie würde a_7 lauten?

MLAN1 Matrizen Lösungen Serie 6

Lösung 1

∞-viele Lösungen mit einem freien Parameter

$$\vec{r} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} -3 \\ -2 \end{pmatrix}$$
 $\mu \in \mathbb{R}, \text{ d.h. } g_1 = g_2 = g_3$

d.h. drei zusammenfallende Geraden.

Lösung 2

$$x^T = \left(\frac{43}{4}, 33, 10, -\frac{1}{2}\right)$$

Lösung 3

- a) $(E)_1$: (n-1) Div. und $(n-1)\cdot n$ Mult., insgesamt: n^2-1 w.O. $(E)_2$: (n-2) Div. und $(n-2)\cdot (n-1)$ Mult., insgesamt: $(n-1)^2-1$ w.O.
 - $(E)_3$: (n-3) Div. und $(n-3)\cdot (n-2)$ Mult., insgesamt: $(n-2)^2-1$ w.O.

. . .

$$(E)_j$$
: $O(n) = (n - j + 1)^2 - 1$ w. O.

b) alle Schritte zusammen: $O(n) = \sum_{j=1}^{n} (E)_j = \frac{1}{6} n(n+1)(2n+1) - n$ w. O.

Lösung 4

Vorzeitiger Abbruch nach 2 Schritten:

$$\left\{ \begin{array}{lllll} x_3 & = & - & 17x_1 & - & 43x_2 & + & 3 \\ x_4 & = & & 7x_1 & + & 19x_2 & - & 1 \end{array} \right. \qquad x_1, x_2 = \text{freie Parameter}$$

$$x = \begin{pmatrix} 0 \\ 0 \\ 3 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 0 \\ -17 \\ 7 \end{pmatrix} + \nu \begin{pmatrix} 0 \\ 1 \\ -43 \\ -19 \end{pmatrix} \quad \begin{cases} x_1 = \mu \\ x_2 = \nu \end{pmatrix} \quad \mu, \nu \in \mathbb{R}$$

Lösung 5

- a) $a \neq \pm 4$: genau eine Lösung: $x_1 = 4 + \frac{a^2}{a+4}$ und $x_2 = -\frac{2a}{a+4}$
 - a=4: ∞ -viele Lösungen mit einem freien Parameter: $x_1=-2\mu+4,\ x_2=\mu\in\mathbb{R}$ freier Parameter
 - a = -4: keine Lösung
- b) $b \neq 3$: genau eine Lösung: $x_1 = \frac{3b-1}{3-b}$ und $x_2 = \frac{1-b^2}{3-b}$
 - b=3: keine Lösung
- c) $m \neq 2$: genau eine Lösung: Schnittpunkt zweier Geraden
 - ullet m=2 und q=3: $\infty-$ viele Lösungen, zwei zusammenfallende Geraden g=h
 - m=2 und $q\neq 3$: keine Lösung, zwei parallele Geraden $g\parallel h$ und $g\neq h$

Lösung 6

ein mögliches Bildungsgesetz ist das folgende:

- $a_1 = 1$, vor a_2 steht eine Eins, also ist $a_2 = 11$,
- vor a_3 stehen drei Einsen, also ist $a_3 = 31$,
- vor a_4 stehen eine Drei und vier Einsen, also ist $a_4 = 1341$,
- vor a_5 stehen eine Vier zwei Dreien und sechs Einsen, also ist $a_5 = 142361$,
- usw.

 $a_7 = 1826345332111$