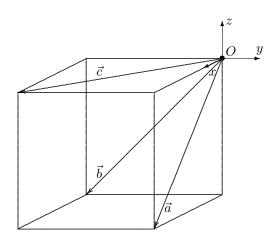
MLAN3 Serie 12

Aufgabe 1

Betrachten Sie die *Spiegelung* S im \mathbb{R}^3 an der xz-Ebene

- a) Bestimmen Sie die Abbildungsmatrix dieser Spiegelung bzgl. der Standardbasis Σ_e .
- b) Bestimmen Sie die Abbildungsmatrix dieser Spiegelung bzgl. Σ_{neu} , wobei $b_1 = \mu \cdot (1, 1, 1)^T$, $b_3 = \mu \cdot e_2 + \nu \cdot e_3$, $b_2 = \dots$? Σ_{neu} soll o.n. sein.
- c) Was für Eigenschaften haben die Matrizen in a) und b)?

Aufgabe 2



Gegeben: $\vec{a}, \, \vec{b}$ sowie \vec{c} im Einheitswürfel, Kantenlänge =1, cf. Figur und ein Vektor $\vec{d}=(1,\ 1,\ 1)^T$

- a) \vec{d} als Linearkombination von \vec{a} , \vec{b} und \vec{c} .
- b) Bestimmen Sie eine o.n. Basis Σ_{neu} mit \vec{b}_1 =Vielfaches von \vec{a} , \vec{b}_1 und \vec{b}_2 liegen in der von \vec{a} und \vec{b} aufgespannten Ebene (Gram Schmidt).
- c) \vec{d} bzgl. der neuen Basis Σ_{neu} .

Aufgabe 3

Gegeben sei die Matrix $C=\left(\begin{array}{ccc} a & 1 & -2 \\ 0 & -1 & b \\ -1 & -1 & 1 \end{array} \right).$

- a) Bestimmen Sie $a,b\in\mathbb{R}$ so, dass für das *charakteristische Polynom* der Matric C gilt: $p_C(\lambda)=-\lambda^3+\lambda$.
- b) Geben Sie eine Matrix $T \in \mathbb{R}^{3 \times 3}$ so an, dass $T^{-1}CT$ mit den Werten von a und b aus a) Diagonalgestalt hat.
- c) Verwenden Sie die Darstellung von C aus b) zur Berechnung von C^k , $k \in \mathbb{N}$, wobei $C^0 = I_3$.

Aufgabe 4

Sei

$$A = \left(\begin{array}{cc} 3 & 1\\ 1 & 3 \end{array}\right)$$

- a) Lösen Sie das EWP von A.
- b) Bestimmen Sie A^{-1} .
- c) Lösen Sie das EWP von A^{-1} . Was stellen Sie fest?

Aufgabe 5

Sei
$$A=rac{1}{5}$$
 $\left(egin{array}{cc} 6 & 2 \\ 2 & 9 \end{array}
ight)$. Berechnen Sie A^n , $n\in\mathbb{N}$, $A^0:=I_2$

Aufgabe 6

Gegeben ist
$$A = \left(\begin{array}{cc} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{array} \right)$$

- a) Eigenschaften von A, EWP von A
- b) y = Ax, $x, y \in \mathbb{R}^2$. Berechnen Sie die Längen der beiden Vektoren x und y. Was ist auffällig?

Lösung 1

a)
$$S = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

b)
$$b_1 = \frac{1}{\sqrt{3}} (1, 1, 1)^T$$
, für b_3 : $\mu = -\nu = \pm \frac{1}{\sqrt{2}}$, also

$$b_3 = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ \pm 1, \\ \mp 1 \end{array} \right) \quad b_2 = b_3 \times b_1 = \frac{1}{\sqrt{6}} \left(\begin{array}{c} \pm 2 \\ \mp 1 \\ \mp 1 \end{array} \right) \quad \text{die neue Basis ist so ein Rechtssystem},$$

$$\text{ und damit } S_{neu} = \frac{1}{3} \, \left(\begin{array}{ccc} 1 & \pm \sqrt{2} & \mp \sqrt{6} \\ \pm \sqrt{2} & 2 & \sqrt{3} \\ \mp \sqrt{6} & \sqrt{3} & 0 \end{array} \right).$$

c) S und S_{neu} sind ähnliche Matrizen: $det(S)=det(S_{neu})=-1$, $S^{-1}=S^T=S$, $S^2=I_3$, analog: $S_{neu}^{-1}=S_{neu}^T=S_{neu}$, $S_{neu}^2=I_3$

Lösung 2

a)
$$\vec{d} = \frac{1}{2} \vec{a} - \frac{3}{2} \vec{b} + \frac{1}{2} \vec{c}$$

$$\vec{b}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad \vec{b}_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} \quad \vec{b}_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$$

c) $\vec{d} = \mu_1 \vec{b}_1 + \mu_2 \vec{b}_2 + \mu_3 \vec{b}_3$, wobei $\mu_k = \vec{d} \cdot \vec{b}_k$, k = 1, 2, 3, also $\mu_1 = 0$, $\mu_2 = -\frac{4}{\sqrt{6}}$ und $\mu_3 = -\frac{1}{\sqrt{3}}$, cf. MLAN3 Serie 2, Aufgabe 2 (statt μ_k haben Sie dort die c_k).

Lösung 3

a)
$$a = 0$$
, $b = 2$

b)
$$\lambda_1 = 0$$
, $\lambda_{2.3} = \pm 1$, $T = \begin{pmatrix} -1 & -1 & 1 \\ 2 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$, $D = T^{-1}CT$

c) $C=TDT^{-1}$ und $C^k=TD^kT^{-1}$ somit erhalten wir: $C^k=A^2$ für k gerade und $C^k=A$ für k ungerade

Lösung 4

a)
$$\lambda_1=4$$
, $E_4=span\left\{\left(\begin{array}{c}1\\1\end{array}\right)\right\}$ und $\lambda_2=2$, $E_2=span\left\{\left(\begin{array}{c}1\\-1\end{array}\right)\right\}$

b)
$$A^{-1} = \frac{1}{8} \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix}$$

c) EW von A^{-1} sind die Kehrwerte der EW von A. Die Eigenräume werden von denselben EV aufgespannt! $E_4=E_{1/4}$ und $E_2=E_{1/2}$

Lösung 5

$$A^n = T D^n T^T = \frac{1}{5} \left(\begin{array}{cc} 4 + 2^n & -2 + 2^{n+1} \\ -2 + 2^{n+1} & 1 + 2^{n+2} \end{array} \right)$$

Lösung 6

$$\text{a) } A \text{ ist orthogonal, } A^{-1}=A^T \text{ und } det(A)=1 \text{, EWP: } \lambda_{1.2}=e^{\pm j\varphi} \text{, } E_{\lambda_{1.2}}=span\left\{\left(\begin{array}{c} \pm j \\ 1 \end{array}\right)\right\}$$

b) $\|x\|=\|y\|$, insbes. in der 2- Norm, längentreue Abbildung, $A=D_{\varphi}=$ Drehung um den Winkel φ .