MaE2 Serie 11

Aufgabe 1

Bestimmen Sie die Gleichung der Geraden durch den Nullpunkt, die den Inhalt des Flächenstückes halbiert, das von der Parabel $y=-x^2+3x$ und der x- Achse eingeschlossen wird.

Aufgabe 2

Für welchen Wert des Parameters a>0 schliesst die Kurve mit der Gleichung $y=-\frac{1}{3}\,x^3+ax$ zusammen mit der x- Achse im ersten Quadranten eine Fläche mit Inhalt 6 ein?

Aufgabe 3

Die Kurve $y=p_2(x)$ der Parabel mit der Gleichung $p_2(x)=ax^2+bx+c$ schneidet die x- Achse in den Punkten A(1,0) und B(4,0). AB ist die Seite eines Quadrates, das im ersten Quadranten liegt. Wie sind die Parabelgleichung zu wählen, damit der Parabelbogen durch die Punkte A und B die Quadratfläche halbiert?

Aufgabe 4

Die Kurve $y=p_2(x)$ der Parabel $p_2(x)=-x^2+2x+3$ und die positiven Koordinatenachsen umschliessen ein Flächenstück. Wie muss c in der Geradengleichung x=c gewählt werden, damit die Gerade das Flächenstück halbiert?

Aufgabe 5

Leiten Sie mit Hilfe der Formel von "de Moivre" eine Formel für

- a) $\cos(4x)$: dabei ist $\cos(4x)$ durch $\cos(x)$ allein auszudrücken.
- b) $\sin(5x)$: dabei ist $\sin(5x)$ durch $\sin(x)$ allein auszudrücken.

her

Aufgabe 6

Gesucht sind Real-und Imaginärteil von:

a)
$$z_a = \frac{1-j}{1+2j} - \frac{1+3j}{1-2j}$$
 b) $z_b = \frac{(1+j)(1-2j)(3+7j)}{(4-5j)(1+3j)^2}$

Aufgabe 7

Gegeben sind $z_0 \in \mathbb{C}$ sowie $r \in \mathbb{R}^+$.

Gesucht sind alle $z\in\mathbb{C}$ mit

a)
$$|z_0 - z| = r$$
 b) $|z_0 - z| < r$

Stellen Sie die gesuchten Punktmengen in der Gauss'schen Ebene graphisch dar.

Aufgabe 8

Von einer Schwingung ist der folgende Zusammenhang bekannt:

$$A\cos(\lambda x + \varphi) = \alpha\cos(\lambda x - \frac{\pi}{6}) + 2\sin(\lambda x - \frac{\pi}{3})$$

- a) Stellen Sie A als Funktion von α dar.
- b) Für welche Werte von α wird $A(\alpha)$ minimal, $A_{min} = ?$
- c) Wie gross wird die zu b) gehörige Phase φ ?
- c) Wie gross muss λ sein, damit die kleinste positive Nullstelle der Schwingung für den Fall b) gerade $\frac{\pi}{2}$ ist?

Gerade: $y=mx\Rightarrow$ Schnittstellen der Parabel mit der Geraden: 0 und 3-m Die Fläche des Parabelsegmentes ist $\frac{9}{2}$.

$$\int_{0}^{3-m} (-x^3 + 3x - mx) \, dx = \frac{1}{6} (3-m)^3 = \frac{9}{4} \Rightarrow m = 3 - \frac{3}{2} \sqrt[3]{4}$$

Lösung 2

nebenbei: ungerade Funktion \Rightarrow Kurve symmetrisch zum Ursprung.

Nullstellen: 0 und $\pm \sqrt{3a}$

$$\int_{0}^{\sqrt{3}a} (-\frac{1}{3}x^3 + ax)dx = \frac{3}{4}a^2 = 6 \Rightarrow a = 2\sqrt{2}$$

Lösung 3

Gleichung der Parabel: $p_2(x) = a(x-1)(x-4)!!$

$$\int_{1}^{4} a(x-1)(x-4) dx = -\frac{9}{2} a = \frac{9}{2} \Rightarrow a = -1$$

$$p_{2}(x) = -(x-1)(x-4) = -x^{2} + 5x - 4 \Rightarrow a = -1, b = 5, c = -4$$

Lösung 4

$$\begin{array}{l} p_2(x)=-(x-3)(x+1)\Rightarrow \text{Nullstellen: } x=-1 \text{ und } x=3\\ \Rightarrow \int\limits_0^c (-x^2+2x+3)dx = \frac{1}{2}\int\limits_0^3 (-x^2+2x+3)dx\\ \Rightarrow -\frac{1}{3}c^3+c^2+3c = \frac{9}{2}\Rightarrow c=1.209095150 \text{ mit Newton, Iteration oder Bisektion} \end{array}$$

Lösung 5

a)
$$\cos(4x) = 8\cos^4(x) - 8\cos^2(x) + 1$$

b)
$$\sin(5x) = 16 \sin^5(x) - 20 \sin^3(x) + 5 \sin(x)$$

Lösung 6

a)
$$z_a = \frac{4}{5} (1 - 2j)$$
 b) $z_b = \frac{1}{205} (56 - 53j)$

Lösung 7

- a) Kreislinie eines Kreises k mit Zentrum $M=z_0$ und Radius r: $(x_0-x)^2+(y_0-y)^2=r^2$, wobei $z_0=x_0+jy_0$ und z=x+jy
- b) das Innere eines Kreises k mit Zentrum $M=z_0$ und Radius r: $(x_0-x)^2+(y_0-y)^2< r^2$

Lösung 8

a)
$$A(\alpha) = \sqrt{\alpha^2 - 2\alpha + 4}$$

b)
$$\alpha = 1 \text{ mit } A_{min} = \sqrt{3}$$

c)
$$\varphi_1 = -\frac{2\pi}{3}$$
 bzw. $\varphi_2 = \frac{4\pi}{3}$

d)
$$\lambda = \frac{1}{3}, \frac{7}{3}, -\frac{5}{3}, -\frac{11}{3}$$